
IJSRST184146 | Received : 05 Jan 2018 | Accepted : 17 Jan 2018 | January-February-2018 [(4) 2: 219-225]

© 2018 IJSRST | Volume 4 | Issue 2 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

219

FPGA Implementation of Single Precision Floating Point Multiplier Using High

Speed Compressors
IM. Lavanya1, A. M. Guna Sekhar2

1
M.Tech Scholar, Department of ECE, Sree Rama Engineering College, Tirupathi, Andhra Pradesh, India

2
HOD & Associate Professor, Department of ECE,Sree Rama Engineering College,Tirupathi, Aandhra Pradesh, India

ABSTRACT

Floating point multiplier is one of the vital concerns in every digital system. In this paper, the concepts of High

speed compressors are used for the implementation of a High speed single precision binary Floating point

multiplier by using IEEE 754 standard. Since compressors are special kind of adder which is capable to add

more number of bits at a time, the use of these compressors makes the multiplier faster as compared to the

conventional multiplier. For Mantissa calculation, a 24x24 bit multiplier has been developed by using these

compressors. Owing to these high speed compressors, the proposed multiplier is implemented using Verilog

HDL and it is simulated and synthesized for Xilinx 14.3.

Keywords: Floating Point, Multiplication, Single Precision, Verilog HDL.

I. INTRODUCTION

Multipliers are key components of many high

performance systems such as FIR filters,

microprocessors, digital signal processors, etc.

Multiplication based operations such as multiply and

accumulate(MAC) and inner product are among some

of the frequently used computation- intensive

arithmetic functions currently implemented in many

digital signal processing (DSP) applications such as

convolution, fast fourier transform(FFT), filtering and

in microprocessors in its arithmetic and logic unit.

Since multiplication dominates the execution time of

most DSP algorithms, so there is a need of high speed

multiplier.

Floating point is a way to represent numbers and do

arithmetic in computing machines, ranging from

simple calculators to computers. The term floating

point is derived from the fact that there is no fixed

number of digits before and after the decimal point;

that is, the decimal point can float. In general,

floating-point representations are slower than fixed-

point Representations, but they can handle a larger

Range of numbers. The proposed work deals with

implementing an architecture for a fast floating point

multiplier compliant with the single precision IEEE

754-standard.

The most common representation is defined by the

IEEE Standard for Floating-Point Arithmetic (IEEE

754). It is a technical standard established by the

Institute of Electrical and Electronics Engineers (IEEE)

and the most widely used standard for floating-point

computation. Floating Point numbers represented in

IEEE 754 format are used in most of the DSP

Processors. It also specifies standards for arithmetic

operations and rounding algorithms. Floating point

arithmetic is useful in applications where a large

dynamic range is required or in rapid prototyping

applications where the required number range has not

been thoroughly investigated.

The Binary Floating point numbers are represented in

Single and Double formats. The Single consist of 32

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

220

bits and the Double consist of 64 bits. Floating point

number consists of three fields:

1. Sign (S): It used to denote the sign of the number i.e.

0represent positive number and 1 represent

negativenumber.

2. Significand or Mantissa (M): Mantissa is part of a

floating point number which represents the

magnitude ofthe number.

3. Exponent (E): Exponent is part of the floating

pointnumber that represents the number of places

that thedecimal point (binary point) is to be moved.

Number system is completely specified by specifying

asuitable base β, significand (mantissa) M, and

exponent E.A floating point number F has the value

The way floating point operations are executed

depends onthe data format of the operands. IEEE

standards specify aset of floating point data formats,

single precision anddouble precision. The Single

precision consists of 32 bitsand the Double precision

consists of 64 bits. Figure 1shows the IEEE single and

double precision data formats.

(a) IEEE single precision data format

(b) IEEE double precision data format

Figure 1. IEEE Single and Double Precision data

Format

The value of the floating point number represented in

single precision format is

where 127 is the value of bias in single precision data

format and exponent E ranges between 1 to 254, and E

=0 and E = 255 are reserved for special values.

The value of the floating point number represented in

double precision data format is

Where 1023 is the value of bias in double precision

dataformat. Exponent E ranges between 1 to 2046, the

valuesof E = 0 and E = 2047 are reserved for special

values.The performance of multiplier were analyzed

using Xilinx ISE simulation tool.

II. FLOATING POINT MULTIPLIER

ALGORITHM

According to IEEE754 standard, the representation of

a 32 bit binary floating point number is consists of

sign, exponent and mantissa component. During

calculation of floating point multiplication different

operations are performed on each component. The

detail algorithm is described as below

1. Calculation of the sign bit; i.e. SA XOR SB.

2. Exponent is calculated by adding the exponent of

EA and EB. After that, bias the addition by 127 to

get the final exponent. i.e. EA+ EB-127.

3. Add 1 before the mantissa bit to make the 23 bit

into 24 bit after that multiplies together the 24 bit

to get 48 bit result.

4. Normalizing the result, to get the required 23bit

mantissa for the final result.

5. Combine the calculated sign, exponent and

mantissa components to get the desired

multiplication result.

Example of Floating Point Multiplier

Consider two floating point numbers a = -18.0 and b =

+9.5

Expected floating point product = (-18.0) x (+9.5)

 = - 171.0

a = - 10010.0 = - 00010010.0

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

221

 = - 1.00100000000000000000000 x 24

b = +1001.1 = + 00001001.1

 = + 1.00110000000000000000000 x 23

sign of a = 1 = s_a

sign of b =0 = s_b

biased exponent of a = 127 + 4 = 131 =10000011 = e_a

biased exponent of b = 127 + 3 = 134 =10000010 = e_b

mantissa of a = 00100000000000000000000= mant_a

mantissa of b = 00110000000000000000000 = mant_b

fp_a = 1 10000011 00100000000000000000000

 = C1900000h

fp_b = 0 10000010 00110000000000000000000

= 41180000h

Calculation of sign of the product ‘s_out’:

s_out = s_axors_b = 1 xor 0 =1

Calculation of exponent of the product ‘e_out’:

Step1: Add e_a and e_b to get the sum

10000011 + 10000010 =1 00000101

Step 2: Bias of 127 is subtracted from the sum to

exponent of the output

1 00000101 – 01111111 = 10000110 = e_out

Calculation of mantissa of the product ‘m_out’:

Step 1: Extract both the mantissas by adding 1 as MSB

for normalization to form 24-bit mantissas

24-bit mant_a = 100100000000000000000000

24-bit mant_b = 100110000000000000000000

Step 2: multiply 24-bit mant_a and mant_b to get 48-

bit product

(100100000000000000000000) X

(100110000000000000000000)

=01010101100000000000000000000000000000000000

0000

Step 3 : Leading 1 of the 48-bit is found and the

remaining bits are truncated to 23-bit output mantissa

value to get the mantissa of the output.

m_out = 01010110000000000000000,

e_out =100000110

Floating Point Product(in binary) = 1 10000110

01010110000000000000000=C32B0000h

biased exponent = 10000110 =134

unbiased exponent =134 - 127 = 7

Floating Point Product(in decimal)

= - 1. 01010110000000000000000x 27

= - 10101011.0000000000000000

= -171 .0

III. DIFFERENT TYPES OF COMPRESSOR

ARCHITECTURE

In binary multiplication a large number of partial

product additions are carried out. In conventional

multiplier full adders are used for partial product

addition. With full adder maximum of 3 inputs can be

added at a time. Accordingly to add all the partial

products large numbers of full adders are required.

Hence, to reduce the number of adders in this

implementation High speed compressors are

introduced. Different compressors are developed

based upon the concept of binary counter property.

A. 5-3 compressor

In 5-3 compressor, maximum of five inputs can be

added at a time wherein the output is a three

bitnumber. Table-1 shows the counter property of 5-3

compressor.

Table 1. Counter Property of 5-3 Compressor

5-3 compressor is implemented by using two full

adders and one half adders as shown in Figure2.

Figure 2. Structural Design of 5-3 Compressor

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

222

B. 4-3 compressor

Some basic different compressors architecture are

designed .In Figure. 3 shows the block diagram of 4-3

compressor which is designed by using one full adder

and two half adder.

Figure 3. Structural Design of 4-3 Compressor

C. 6-3 compressor

For the design of 6-3 compressor, two full adders are

used. Figure 4 shows the block diagram of 6-3

compressor. For the parallel addition purpose ripple

carry adder as seen in Figure 5 is used.

Figure 4. Structural Design of 6-3 Compressor

Figure 5. Parallel Addition Unit for 6-3 Compressor

D. 7-3 compressor

Similarly for the design of 7-3 compressor in Figure 6,

one full adder and one 4-3 compressor are used. Its

parallel addition unit is given in figure 7.

Figure 6. Structural Design of 7-3 Compressor

Figure 7. Parallel Addition Unit for 7-3 Compressor

E. 15-4 compressor

For the implementation of 15-4 compressor five full

adders, two compressors, and parallel adder unit are

used. Figure.8 shows the block diagram of 15-4

compressor and its optimized parallel adder is shown

in figure 9.

Figure 8. Architecture of 15-4 Compressor

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

223

Figure 9. Parallel Adder Unit for 15-4 Compressor

By using the concept of adders all the compressors are

implemented. These compressors are used in the

calculation of partial product addition in different

stages of binary multiplication.

IV. SINGLE PRECISION FLOATING POINT MULTIPLIER

The proposed architecture for Single Precision Floating Point Multiplier using High Speed Compressors is given in Figure 10.

Figure 10. Proposed Architecture of Single Precision Floating Point Multiplier

From the calculation perspective whole floating point

multiplication is divided into four sections.

A. Sign section

B. Exponent section

C. Mantissa section

D. Normalization section

A. Sign Section

In sign section, the sign bit for the final result is

calculated. The sign bit is calculated by performing

XOR operation on the sign bits of the two operands.

B. Exponent Section

In this section the two operands are added directly by

using 8-bit ripple carry adder. After addition, biasing

is required to get the final exponent. For biasing

decimal value 127 is subtracted .Here subtraction is

done by using 2’s complement method.

C. Mantissa Section

Mantissa calculation is the most important part of the

floating point multiplier. The whole performance of

the floating point multiplier is depending upon the

mantissa calculation section. In mantissa calculation

24x24 bit binary multiplier is required to do the

multiplication of mantissas of two operands. In this

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

224

paper binarymultiplier is implemented by using high

speed compressors, which reduces the delay. In single

precision floating point number, mantissa is consists of

23 bit. So initially normalization is done in the

mantissa by adding 1 at the MSB. After normalization

the mantissa of each operand became 24 bit. After

binary multiplication of the two normalized 24 bit

operands a 48 bit number will generate as a

multiplication output. Again this 48 bit number is

normalized to 23 bit to get the final mantissa.

In this paper 24 bit multiplier is proposed and

implemented by using the concept of high speed

compressors. After multiplication of 24x24 binary

multiplier large numbers of partial products are

obtained. Further those partial products are added by

using different compressors at different stage. At first

stage of partial product addition, no need of any

addition because only one partial product is there.

Which directly goes as it is as LSB. At the second stage

one half adder is required because only two partial

products are here. The sum bit taken as output for that

stage and carry will go to the next stage. At third stage,

partial products are increased to three and one carry

from previous stage and hence a total four partial

products are present. Addition of these four partial

products is done by using 4-3 compressor. In the next

stages the number of partial products goes on

increasing. So, higher order compressors are required

for addition. Similarly in the4th stage 7-3 compressor,

5thstage 8-4 compressor, 6th stage 9-4 compressor,

and 7th stage 10-4 compressor are used. As the stage

increases higher order compressors are used. At 24th

stage, partial products are increased 28 including the

carry from previous stages. For the partial addition of

24th stage 28-5 compressor is used. After 24th stage

number partial products are decreasing .So for the

addition of those partial products previously used

compressors are used.

D. Normalization Section

In the Normalization section, normalization of

exponent and mantissa are performed. According to

the 47th bit (result of the 24x24 bit binary multiplier)

normalization is done.

i. When 47th bit of 24X24 bit binary multiplier is

binary one ,mantissa is normalized to 23 bit by

taking 46th to 24th bit position number and

exponent is increased by decimal value one.

ii. When 47th bit of 24X24 bit binary multiplier is

binary zero, mantissa is normalized to 23 bit by

taking 45th to 23th bit position number and

there is no increment in the exponent value.

V. RESULTS

The program is written in Verilog code for the

implemented single precision floating point multiplier

and the results are verified. The simulation results and

synthesized results are shown in Xilinx 14.3.

Block diagram

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

225

RTL schematic

Technology schematic

Simulation results

VI. CONCLUSION

In this paper, single precision floating point multiplier

based on the IEEE-754 format is successfully

implemented on FPGA. The modules are written in

Verilog HDL to optimize implementation on FPGA.

VII. REFERENCES

[1]. A. Dandapat, S. Ghosal, P. Sarkar, D.

Mukhopadhyay, "A 1.2-ns16×16-Bit Binary

Multiplier Using High Speed Compressors",

International Journal of Electrical and

Electronics Engineering, 2010.

[2]. Shubhajit Roy Chowdhury, Aritra Banerjee,

Aniruddha Roy, HiranmaySaha,"Design,

Simulation

[3]. and Testing of a High Speed Low Power 15-4

Compressor for High Speed Multiplication

[4]. B. Jeevan, S. Narender, Dr C.V. Krishna Reddy,

Dr K. Sivani,"A High Speed Binary Floating

Point Multiplier Using Dadda

Algorithm",IEEE,2013.

[5]. LoucasLouca, Todd A. Cook, William H.

Johnson, "Implementation of IEEE Single

Precision Floating Point Addition and

Multiplication on FPGAs", IEEE,1996.

[6]. Shaifali, Sakshi, " FPGA Design of Pipelined 32-

bit Floating Point Multiplier", International

Journal of Computational Engineering &

Management, Vol. 16, 5th September 2013.

[7]. IEEE 754-2008, IEEE Standard for Floating-

Point Arithmetic, 2008.

[8]. Mohamed Al-Ashrafy, Ashraf Salem,

WagdyAnis, "An Efficient Implementation of

Floating Point Multiplier", IEEE, 2008.

[9]. Guy Even, Silvia M. Mueller, Peter-Michael

Seidel," A dual precision IEEE floating-point

multiplier", INTEGRATION the VLSI journal,

pp167-180, 2000.

[10]. M. Morris Mano, "Digital Design",3rd edition,

Prentice Hall,2002

